$\qquad$ DATE $\qquad$
$\qquad$

## 10-1 Study Guide and Intervention

## Sequences as Functions

Arithmetic Sequences An arithmetic sequence is a sequence of numbers in which each term is found by adding the common difference to the preceding term.

| $n$th Term of an <br> Arithmetic Sequence | $a_{n}=a_{1}+(n-1) d$, where $a_{1}$ is the first term, $d$ is the common difference, <br> and $n$ is any positive integer |
| :--- | :--- |

Example Find the next four terms of the arithmetic sequence 7, 11, 15, ... . Then graph the first seven terms of the sequence.
Find the common difference by subtracting two consecutive terms.
$11-7=4$ and $15-11=4$, so $d=4$.
Now add 4 to the third term of the sequence, and then continue adding 4 until the four terms are found. The next four terms of the sequence are $19,23,27$, and 31 .
Plot each point $(1,7),(2,11),(3,15),(4,19),(5,23),(6,27)$, and $(7,31)$ on a graph.


## Exercises

2. $-28,-31,-34, \ldots$

3. $13,7,1, \ldots$

$-5,-11,-17,-23$
4. $207,194,181, \ldots$


168, 155, 142, 129
6. $151,177,203, \ldots$


229, 255, 281, 307
$\qquad$

## 10-1 Study Guide and Intervention <br> (continued)

## Sequences as Functions

Geometric Sequences

| Term | Definition | Example |
| :--- | :--- | :--- |
| Common Ratio | $r=a_{n+1} \div a_{n}$ | The common ratio in a geometric <br> sequence with consecutive terms <br> $\ldots 5,10 \ldots$ is $10 \div 5=2$. |
| nth Term of a Geometric <br> Sequence | $a_{n}=a_{1}\left(r^{n-1}\right)$ where $a_{1}$ is the first <br> term and $r$ is the common ratio. | The fourth term of the geometric <br> sequence with first term 5 and common <br> ratio 2 is $5\left(2^{4-1}\right)=40$. |

Example Find the next three terms of the geometric sequence 2, 6, $18 \ldots$. Then graph the sequence.

Find the common ratio by dividing two consecutive terms.
$6 \div 2=3$ and $18 \div 6=3$, so $r=3$.
Now multiply the third term of the sequence by 3 , and then continue multiplying by 3 until the three terms are found. The next three terms are 54, 162, and 486.
Find the domain and range for the first six terms of the sequence.
Domain: $\{1,2,3,4,5,6\}$
Range: $\{2,6,18,54,162,486\}$


## Exercises

Find the next three terms of each geometric sequence. Then graph the sequence.

1. $\frac{1}{16}, \frac{1}{4}, 1, \ldots$
2. $20,4, \frac{4}{5}, \ldots$

$\frac{4}{25}, \frac{4}{125}, \frac{4}{625}$
3. $-24,-12,-6, \ldots$

$-3,-1.5,-0.75$
